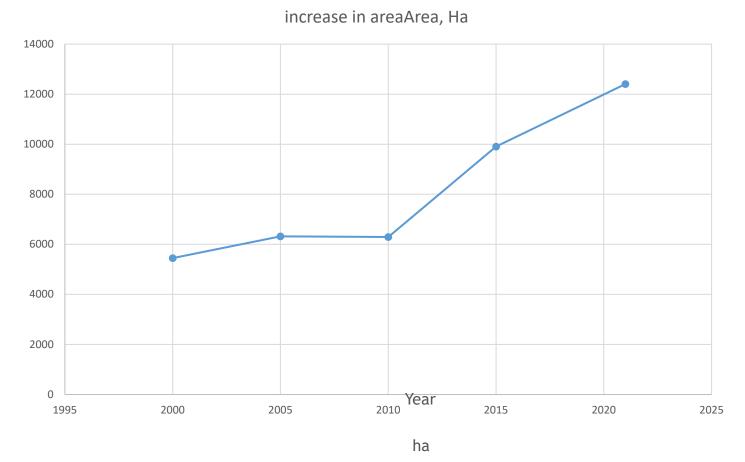
Integration of Green Technologies in rice production

Green Economy and Sustainable Private Sector Development Program in Kyrgyzstan (GIZ)

Green Economy and Sustainable Private Sector Development in Kyrgyzstan 2021-2026


Objective: The transition towards an inclusive green economy that benefits the well-being of the Kyrgyz population is strengthened.

Supporting the development of several agricultural VCs:

- ✓ Early Vegetables in Nooken and Aravan district of Jalal-Abad and Osh oblasts
- ✓ Organic Plum in Aksy district of Jalal-Abad oblast
- ✓ Animal husbandry
- ✓ Rice in Batken oblast
- \checkmark Cereals on the rain fed land

Rice cultivation in Kyrgyzstan

- Area under rice doubled in the last 10 12 years
- Rice is grown in the South, 30% of rice is grown in Batken
- Average yield: 2900-3500 kg/ha

http://www.fao.org/faostat/en/#data/QC

Statistics: Rice in Batken

	Batken Oblast	Kadamzhai Rayon	Batken Rayon	Leilek Rayon					
Average yield (t/ha)	3,7	3,7	3.5	3.5					
Total area (ha)	3353	2735 (>4000)	280	338					
Average area per 1 HH (ha)	0.7	1	0.3	0.5					
Average price (KGS per 1 kg)	100 (Burgondu Ak-Turpak) – 180-220 (Sokh Ak-Turpak)								
Average production cost	1 700 EURO per ha (Fertilizers, Pesticides and Herbicides, Harvesting, Threshing, Drying, Processing, Packaging, Transportation)								
Average income	3 500 EURO per ha								
Average profit	1 800 EURO per ha								

Value Chain Characteristics: Rice

Strengths

- Stable prices (+ significant income impact)
- Stable yield
- Established marketing structure
- Local processing (to the level of ready-to-consume product)
- Many processors (lack of monopoly)
- Relative inclusiveness (compared to EV less investment costs)
- Sufficient water availability (current consumption is 2.5 liters per second in the rice growing cluster)
- Progress in mechanization (up to 35%)
- Potential for more export to Uzbekistan and Tajikistan and import substitution from Russia
- Local "brand" (appreciation by the local population)

Weaknesses

- Comparably low yield due to non-balanced plant nutrition
- Non-optimal use of herbicides (water pollution)
- No systematic testing of new varieties (missing link between science and production)
- Food safety risks due to drying on the roads
- Post-harvest losses due to insufficient drying

Project Approaches

Increase of yield levels and water productivity through:

- Promotion of balanced plant nutrition (Revolving Fertilizer fund)
- Improved seed management and seed improvement
- Crop monitoring
- Training on sound pesticide application

Food safety improvement through better drying

Introduction of water-saving technologies (furrow and intermittent irrigation of rice) - demonstrations

Demonstration of alternatives to rice crops (bone fruit, berry, etc.)

Challenges

- Water consumption by ha will stay relatively high
- Limited employment impact
- Limited gender impact

Expected green economy impact:

- 30 50% increase in water productivity
- 30% increase in profits
- Reduction of methane emissions by 50% per 1 kg produced
- Advice and better plant nutrition lead to reduction in production risks, hence, the crop becomes more attractive to risk-adverse (poor) people

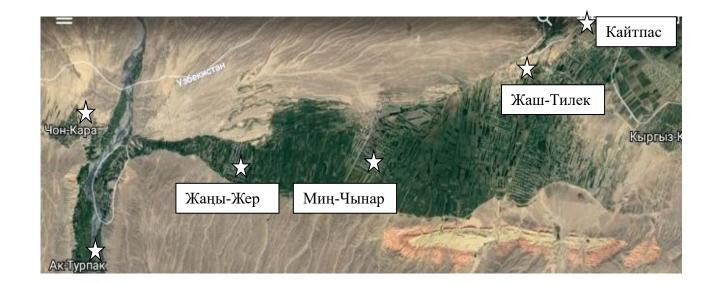
Project activities 2021-2025

2021:

120 farmers, 5 villages, 5 brigadiers Area - 120 hectares

2022 :

158 farmers, 6 villages, 7 brigadiers Area - 242 ha


2023- 2025:

372 farmers Area – 570 ha

Increase in average yields by **25%**

Additional income per 1 ha - 570-680 \$

CO2 emissions decreased: 2021 – **240 t** 2022 by - **489 t** 2025 by – **1700 t**

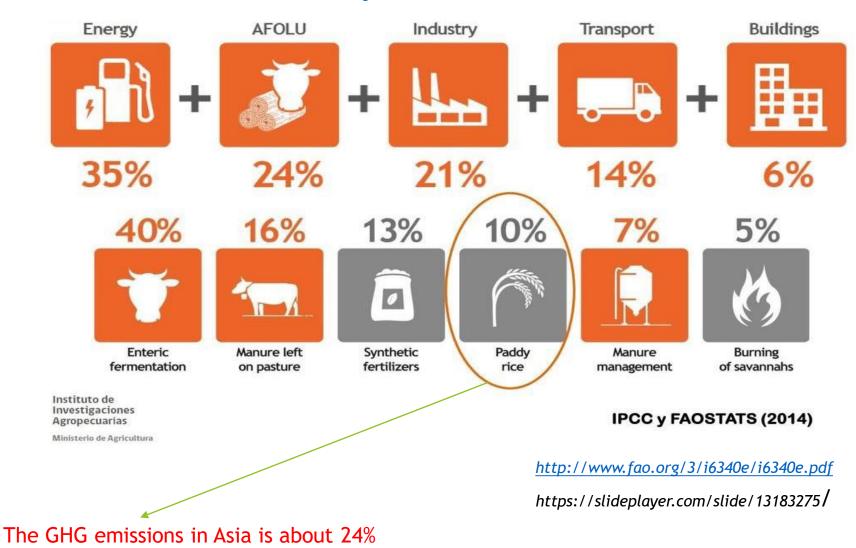
Increase of yield levels and water productivity

Development of regular Crop Monitoring System – local brigadiers (field advisors) - the core of this system

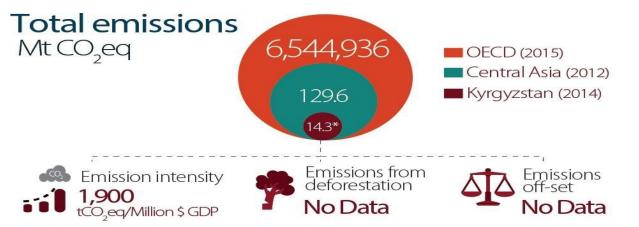
Promotion of *balanced plant nutrition* - Using not only (traditionally used) nitrogen fertilizers, but also complex fertilizers (NPK)

Creation of *revolving fertilizer fund* – ensuring timely delivery of fertilizers to farmers on 50% prepayment

Increase of yield levels and water productivity


Improvement of seed management and quality -Testing varieties from Uzbekistan and local multiplication of the best selected varieties

Training on sound water-saving cultivation technologies and pest control


Introduction of quality pesticides and safe application techniques introduction of drones

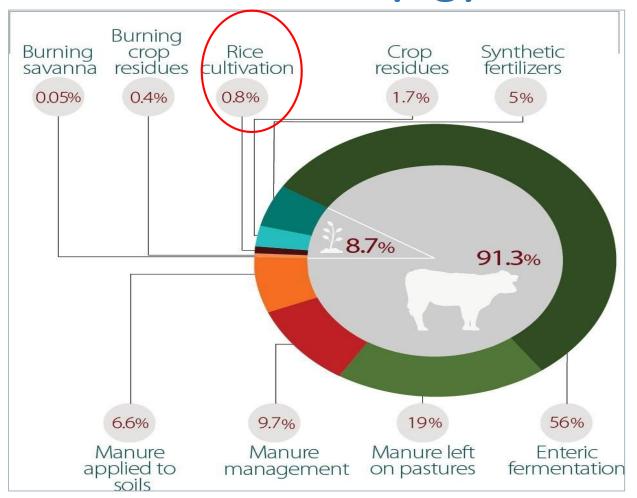
Introduction of global GHG from rice paddies

GHG emission in Kyrgyzstan

* Includes emissions from land use change and forestry

Sectoral emissions (2014)

FAOSTAT. 2018. www.fao.org/faostat/en/#data/_RL https://climateknowledgeportal.worldbank.org/sites/default/files/2019-06/CSA%20_Profile_The%20Kyrgyz%20Republic.pdf

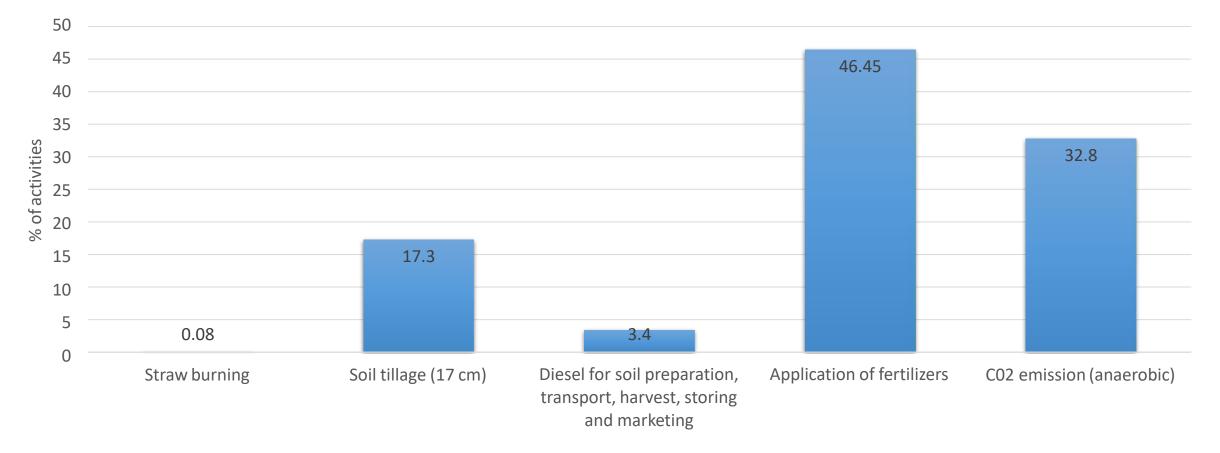


www.google.com

GHG emission from agriculture, Kyrgyzstan

www.google.com

https://climateknowledgeportal.worldbank.org/sites/default/files/2019-06/CSA%20 Profile The%20Kyrgyz%20Republic.pdf


FAOSTAT. 2018. www.fao.org/faostat/en/#data/_RL

Carbon footprint from rice production

INPUT Жайдары куруч-Jaidary rice	Carbon footprint of input (kg CO2eq/kg)	Traditional production			
(3000 кg/ha) Jash-Tilek		Units (kg/ha/ year	Total carbon kg CO2 eq/ha		
Straw burning	0,08	150	11,40		
Soil preparation (ploughing, harrowing, for 1 hectare)	2,30	60,00	138		
Soil tillage-ploughing (15-20 cm) assumptions	2448	1	2448 0		
Seeding is done by hand	0	150 kg			
Diammonium phosphate (DAP-диаммофос)	4,34	0	0		
MonoAmmonium Phosphate (МАР-аммофос)	4,59	200	917,40		
Urea (мочевина)	4,82	400	1928		
Ammonium nitrate (аммиачная селитра)	9,28	400	3712		
Application of herbicides (no information	0	<u>4 кг</u> 16	0		
Harvest of rice (Harvester -diesel)	2,3		36,80		
Transportation and storage of rice	2,3	32	73,60		
Rice processing and transportation to market	2,3	26	59,8		
Transportation about 6 km distance within 4 months	2,3	75	172,5		
Irrigation comes from Sokh river (4000 κg is needed for 1 kg)	0	12000 000,00	0		
C02 emission (CH4 and N20)-anaerobic condition	4 616,00	1	4616,00		
Total emission kg C02 eq./ha year			14113,5		
Emission from 1 kg of rice paddy			4,7		
Emission from 1 kg of raw rice (<i>1 kg rice paddy=0,65 kg of i</i>	raw rice)		7		
Please go to the excel file for more detailed information					

Carbon footprint from rice production

Carbon footprint from tice production kg C02 eq./ ha year

Application of fertilizer (Technological map for 2023)

INPUT	Carbon footprint of input	Scenario 1: Application of fertilizers			Scenario 2: traditional production			Difference "modern" versus "traditional" scenario			
		units total Carbon		units total carbon		carbon	in kg CO2 eq/ ha				
Application of mineral fertilizers: Diammonium phosphate (DAP-диаммофос). <i>Example (Jash-Tile)</i>	kg 4,34CO2eq/kg	300	kg/ha	1 302	kg CO2 eq/ha	0,00	kg/ha/ year	0,00	kg/ha/ year	1302	kg CO2 eq
Application of mineral fertilizers: MonoAmmonium Phosphate (MAP-аммофос)	kg 4,59CO2eq/kg	100	kg/ha	459	kg CO2 eq/ha	200	kg/ha/ year	918	kg/ha/ year	459	kg CO2 eq
Application of mineral fertilisers: Urea (мочевина)	kg 4,82CO2eq/kg	300	kg/ha	1446	kg CO2 eq/ha	400	kg/ha/ year	1928	kg/ha/ year	-482	kg CO2 eq
Application of mineral fertilisers: Ammonium nitrate (аммиачная селитра)	kg 9,28CO2eq/kg		kg/ha		kg CO2 eq/ha	400	kg/ha/ year	3712	kg/ha/ year	3712	kg CO2 e q
TOTAL				3207	kg CO2 eq/ha			6557	kg/ha/ year	-3350	kg/ha/ year

Application of fertilizers according to a new technological map can reduce the CO2 emission-3351 kg CO2/ ha year!

«Dry Rice» Demonstrations of rice furrow irrigation

2022

6 test plots for rice cultivation by furrows were organized in 3 villages (0.03-0.13 ha each):

- Rice as the main crop
- Rice as a second crop (after early potatoes, winter wheat)
- Rice in the orchard intercrop

2023

7 plots – 7 ha

The average yield of raw rice on the demo plots was about **37.7 t/ha**

Advantages:

- ✓ More than 2 times water saving
- ✓ Rationale use of land
- ✓ Saving on machinery services

Challenges:

- ✓ changing stereotypes
- ✓ weed control

Thank you!