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Abstract. The scope of our work is to compare Sentinel-2 and unmanned aerial vehicles (UAV)
imagery from Western Tian Shan for monitoring applications in walnut fruit forests. Because
acquiring field data on walnut fruit forests is difficult due to access limitations in the Tian Shan,
remote sensing offers a unique opportunity to increase spatial and temporal coverage of eco-
logical parameters. Sentinel-2 satellites launched in 2015 have been providing images at spatial
resolutions of 10 to 20 m; however, difficulties remain as information retrieved from Sentinel
pixels result from a mixture of objects that affect reflectance signals. We used submeter multi-
spectral UAV images to assess the sensitivity of Sentinel-2 normalized difference vegetation
index (NDVI) to subpixel vegetation. Results showed that Sentinel-2 data overestimates
NDVI in regions with open terrain and grass, and underestimates NDVI in areas with trees.
By implementing a bias correction method, the accuracy of the Sentinel-2 derived NDVI
increased; R2 values increased from 0.59 to 0.88 (p value < 0.001). We also showed that drought
index derived from Sentinel-2 vegetation condition index (VCI) is well correlated with the
ground-based standard precipitation index (SPI). Using this bias correction method, on average
the correlation increased by 3% between VCI and SPI. © The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JRS.17.022204]
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1 Introduction

Kyrgyzstan is a mountainous country with rich biodiversity. Although it occupies only 0.13%
of the Earth land surface, Kyrgyzstan has about 2% of the world’s floral and 3% of its faunal
diversity.1 Also many wild fruits and flowers originate from this region with a wide range
of genetic diversity related to widely cultivated plants like tulips2,3 and apples.4 Moreover,
Kyrgyzstan is a poor country with more than 60% of its population residing in rural areas.5

Wild walnut-fruit forests in the south play an important role in the rural economy, which are
effectively the main sources of income for many families in the villages, surpassing animal hus-
bandry. Walnut (Juglans regia) is the main crop, which is being harvested on annual basis by
local residents; however, wild apples also contribute to the incomes of rural families. Forest
products contribute from 22% to 61% of local incomes with walnut collection being the most
significant source followed by wild apples.6,7

The most numerous wild apple species isMalus sieversii; red apples (Malus niedzwetzkyana)
are far less abundant (<10% of apple trees). Both Malus species are included in the Red Data
Book of Kyrgyzstan.1 Malus niedzwetzkyana is rated as “vulnerable” in national Red Data Book
and “endangered” by the IUCN Global Red List; Malus sieversii is categorized as “least con-
cern” and “vulnerable,” respectively, on the two lists. Malus sieversii is considered an ancestor
of Malus orientalis and Malus domestica, a domestic variety of apple trees,4 which makes it
a valuable genetic resource for new varieties.
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Livestock that browse freely in these forests destroy young trees and damage stems and
branches of adult trees.8–10 Overgrazing and selective cutting for firewood contributes to sup-
pression of natural regeneration and loss of genetic diversity.11,12 In addition to these anthropo-
genic influences, climate change is increasing drought occurrence frequency and thus changing
natural habitats.13–16 Kyrgyzstan is the third most vulnerable country in Eastern Europe and
Central Asia to climate change, mainly owing to its climate-sensitive agricultural systems and
a lack of an adaptive capacity.17

If no measures are taken, the sparse populations of wild apples can be severely damaged and
further decreased. Thus accurate spatial and temporal monitoring of trees is important to protect
natural ecosystems. In addition, accurate estimates of the extent of degraded forests and forest
clearing are key components of international climate change initiatives, such as reducing
emissions from altered and transformed forests in developing countries (REDD+) within the
context of the UN framework convention on climate change.18 As selective logging and
collection of nontimber forest products are widespread, it is imperative to develop a national
or subnational system that accurately monitors forest canopy openings, intensity of use, and
contributes to improved forest management to recover forest biomass (carbon stocks) and natural
regeneration.19

Remotely sensed data provide a great potential for analyzing Earth surface dynamics at vari-
ous spatiotemporal scales, particularly in areas that are challenging to access.20 Knowledge of
spatial variability among and within forest parcels is a key factor for the users of walnut fruit
forests to estimate yield and quality.21 In this context, remote sensing (RS) has already shown its
potential and effectiveness in spatiotemporal vegetation monitoring.19,22–24 Additionally, many
satellite platforms (e.g., Landsat, MODIS, Aster, SPOT, Sentinel-1, and Sentinel-2) are now
providing free datasets, thus promoting satellite imagery for many agricultural applica-
tions,14,22,23,25–27 including those with multisensor data fusion approachs.28 For example,
remotely sensed images from Sentinel-2 used in our research offer decametric resolution in terms
of space and time, with a ground sample distance of up to 10 m and a revisit time of 6 days.
Misregistration of Sentinel-2 imageries was addressed in the processing baseline (version 02.04)
21 and deployed by the European Space Agency on June 15, 2016.29

However, when considering vegetation over complex terrain, such as mountainous
Kyrgyzstan with 94% of the land occurring above 1000 m a.s.l.,30 RS becomes more challeng-
ing. Indeed, steep and complex orography leading to varying lighting conditions may deeply
affect the computation of the overall spectral indices leading to a biased vegetation status assess-
ment. Therefore, approaches and algorithms using unmanned aerial vehicles (UAV) have been
developed for satellite-based multispectral vegetation pixel calibration over mountainous
regions. Low-altitude platforms, such as UAV and airborne sensors, provide imagery with high
spatial resolution (up to a few cm) and flexible flight scheduling31 facilitating vegetation mon-
itoring at high resolution in complex terrain.

Recent studies applied UAVs in assessing forest condition,19,32–34 precision agricul-
ture,21,23,24,35 and mapping, modeling, and monitoring landslides.36–43 Several approaches have
been employed to calibrate satellite imagery with UAV multispectral data and field radiometric
measurements. These focus on improving the satellite multispectral imagery to facilitate use in
precise monitoring of large agricultural areas by calibrating spectral bands44,45 or calibrating
vegetation indices.35,46 Some studies have improved satellite reconnaissance data on physical
characteristics of vegetation (e.g., leaf area index) using UAV data.47,48 Other studies solve the
practical issue of mapping of invasive species with combinations of UAV and Sentinel imagery
and application of machine learning approaches.49 Our understanding of forest vegetation phe-
nology has also improved by calibrating satellite-derived vegetation and imagery index time
series with images derived from UAV and spectral reflectance sensors.50 Another study used
RGB (red, green, and blue) images derived from consumer grade UAVs to more precisely iden-
tify riparian forests from Sentinel image time series.51 Other recent investigations focused on the
alignment among different spectral bands of Landsat, Sentinel, PlanetScope, and UAV
(MicaSense) images on various surface categories in urban areas, providing an exhaustive com-
parison of spectral band matching,52 and atmospheric correction of satellite images with UAV-
sensed normalized difference vegetation index (NDVI).53 All these studies show the viability and
practical applicability of employing satellite imagery correction with UAV imagery because
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UAV imagery is more accurate due to its proximity to the observation point and there is no need
for atmospheric correction.

The scope of this work is to compare Sentinel-2 and UAV imagery from Western Tian Shan
for monitoring applications in walnut fruit forests with a practical aim to improve forest man-
agement and species conservation. In this research, a detailed analysis and comparison of prod-
ucts provided by a decametric resolution satellite and a low-altitude centimetric resolution UAV
platform is presented. We developed an RS-based approach to calibrate Sentinel-2 data at a study
site in Western Tian Shan using UAV data. The effectiveness of Sentinel-2 data bias correction
was evaluated by considering the well-known relation between the NDVI, vegetation condition
index (VCI), and standard precipitation index (SPI).

2 Materials and Methods

2.1 Study Site

The study was conducted in the western Tian Shan (Fig. 1) on slopes of the Fergana and Chatkal
ranges. More specifically, the investigated areas are: Sary-Chelek biosphere reserve, Padysha-
Ata nature reserve, and Kara-Alma forestry unit. These areas are recognized as key biodiversity
areas (KBA) by the Critical Ecosystem Partnership Fund (Table 1).

The western slopes of Fergana range and southern slopes of Chatkal range in the south of
Kyrgyzstan are covered with unique fruit and nut forests, occupying elevations ranging from
about 1000 to 2500 m a.s.l. These semiwild forests are dominated by walnut (Juglans regia)
trees with patches of wild apple (Malus sieversii and M. niedzwetzkyana) and wild pear (Pyrus
korshinskyi), which are globally threatened. Abies semenovii and Picea schrenkiana can be
found in mixed forests on hillslopes. Other scattered tree species also grow in this forest, but

Fig. 1 Study site locations: (a) within Kyrgyzstan; (b) Jalal-Abad region with croplands and area
covered by UAV; (c) UAV image example from Padysha-Ata nature reserve; and (d) Pacha-Ata
meteorological station showing the study polygon.
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they do not develop forest patches and are distributed sporadically within the walnut and apple
forests. These scattered species include Acer turkestanicum, Pyrus turcomanica, Crataegus
spp., Betula spp., Populus spp., Fraxinus spp., Prunus sogdiana, Lonicera spp., Berberis spp.,
Cotoneaster spp., Rosa spp., and among others.

2.2 Datasets

UAV images were acquired using a built-in multispectral camera onboard a DJI Phantom 4
Multispectral. The drone’s camera features one RGB sensor and five multispectral sensors red
(R), green (G), blue (B), red edge (RE), and near-infrared (NIR). It can provide cm-scale map-
ping accuracy using high-resolution multispectral images. The drone also has a sunlight sensor
on the top to capture lighting intensity, which is used for lighting correction, thus providing more
consistent and comparable data collection results.

The flights were conducted in July and August 2021, each covering an area of 105 × 105 m,
at an altitude of 50 m above the take-off point with a 90% front overlap, and an 80% side overlap.
This results in ∼2.6 cm resolution on the ground and potentially higher resolution at treetops.
The plots were selected to cover the greatest vegetation variability in the study region. In total,
we conducted 59 drone flights over different 11;025 m2 plot areas.

Sentinel-2 images (Sentinel-2 MSI: MultiSpectral Instrument, Level-1C) (Table 2) available
from the Google Earth Engine platform were used in this analysis. We used all available data
from Sentinel-2 scenes with <5% cloud cover acquired between April and September of 2016
to 2021.

Data on annual crop yields for the Jalal-Abad region were obtained from Kyrgyz Statistic
Comity.5 These datasets include information on grains, wheat, barley, corn, rice, sugar-beet,
cotton, tobacco, vegetable oils, potatoes, vegetables, melons, fruits and berries, and grapes from
1990 until 2021. These data were used for verification, which is described later.

Meteorological data were obtained from the previous research by Kyrgyzhydromet on
droughts in Kyrgyzstan13 and from decadal agrometeorological bulletins.54 The data represent
monthly precipitation from 1981 to 2021 collected by Kyrgyzhydromet at Pacha-Ata meteoro-
logical station.

2.3 Methodological Approach

2.3.1 Automatic photogrammetric adjustments

Photogrammetric adjustments and the development of orthomosaic UAV images were conducted
using Agisoft Metashape 1.8.3 Professional Edition.55 This software uses the coordinates of
exposure centers of each image performing aerial triangulation in each cell and reconstructs the
photogrammetric blocks.19 It also conducts automatic lightning adjustments of scenes based on
the information from the UAV lightning sensor. These adjustments ensure data consistency
among flights. Finally, we obtained 59 multispectral orthomosaics, which were resampled to
a 2-cm spatial resolution and 100 × 100 m tile size. Specific information regarding the camera
and image overlays of the UAV image processing is presented in Table 3.

Table 1 West Tian-Shan KBA.

Name KBA_ID Coordinates Area (km2) Description

Sary-Chelek KGZ06 Lon: E71.933132° 237.96 UNESCO biosphere reserve on south slope
of Chatkal range in the south of KyrgyzstanLat: N41.868115°

Padysh-Ata KGZ05 Lon: E71.683163 deg 680.55 Padysha-Ata nature reserve on the south
slope of Chatkal rangeLat: N41.717878 deg

Kara-Alma KGZ18 Lon: E73.341518 deg 267.6 Kara-Alma forestry unit has the largest
population of wild apple trees, on the
western slope of Fergana range

Lat: N41.249517 deg
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NDVI was calculated in Agisoft Metashape with a raster calculator as follows:

EQ-TARGET;temp:intralink-;e001;116;141NDVI ¼ ðNIR − RedÞ
ðNIRþ RedÞ ; (1)

where NIR is the near-infrared band and Red is the red band. We used only NDVI images in the
analysis. The UAV image composite [Fig. 2(a)] allowed us to identify individual trees, whereas

Table 3 Parameters used in the Agisoft Metashape software for
image orthomosaic generation and georeferencing the UAV image
of the study site.

Attribute Value

Number of scenes per tile ∼410

Number of tiles 59

Flight altitude 50 m

Image resolution 0.02 m pixel−1

Coverage area (tile size) 100 × 100 m

Spectral channels Red, green, blue, red edge, and NIR

Table 2 Characteristics of the RS UAV and Sentinel-2: MSI, multispectral instrument, level-1C
datasets.

Sentinel-2 A/B DJI Phantom 4 multispectral

Name
Pixel

size (m) Wavelength (nm)
Wavelength

(nm)
Pixel

size (cm) Description

B1 60 443.9 (S2A)/442.3 (S2B) — — Aerosols

B2 10 496.6 (S2A)/492.1 (S2B) 450 ± 16 2 Blue

B3 10 560 (S2A)/559 (S2B) 560 ± 16 2 Green

B4 10 664.5 (S2A)/665 (S2B) 650 ± 16 2 Red

B5 20 703.9 (S2A)/703.8 (S2B) — — Red edge 1

B6 20 740.2 (S2A)/739.1 (S2B) 730 ± 16 2 Red edge 2

B7 20 782.5 (S2A)/779.7 (S2B) — — Red edge 3

B8 10 835.1 (S2A)/833 (S2B) 840 ± 26 2 cm NIR

B8A 20 864.8 (S2A)/864 (S2B) — — Red edge 4

B9 60 945 (S2A)/943.2 (S2B) — — Water vapor

B10 60 1373.5 (S2A)/1376.9 (S2B) — — Cirrus

B11 20 1613.7 (S2A)/1610.4 (S2B) — — SWIR 1

B12 20 2202.4 (S2A)/2185.7 (S2B) — — SWIR 2

QA10 10 — — — Always empty

QA20 20 — — — Always empty

QA60 60 — — — Cloud mask
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the corresponding NDVI image sections derived from Sentinel-2 [Fig. 2(b)] imagery showed
much less detail.

2.3.2 Data processing

In this section, specific methods for data processing developed to compare and investigate the
imagery derived from the two platforms with different spatial resolutions are presented and dis-
cussed in detail.

We calculated NDVI with Sentinel-2 data according to Eq. (1) in Google Earth Engine for the
dates closest to the UAV flights with <10% of the scene covered with clouds. As a result, 59
Sentinel-2 NDVI tiles with areas of about 100 × 100 m were obtained [Fig. 3(a)], which were
overlapped with UAV NDVI tiles. However, because the spatial resolution of Sentinel-2 images
is 10 m and that of UAV images is 0.02 m, the pixels did not always overlap—i.e., not all UAV
pixels fell entirely into Sentinel-2 pixels, and sometimes Sentitel-2 tiles were larger than UAV
tiles because pixel size caused a fragmentation problem (Fig. 3). Thus we omitted these frag-
mented pixels from further analysis. For each, tile we generated a polygon grid with each cell
exactly representing pixels of Sentinel-2 images overlayed on the UAV images [Figs. 3(a) and
3(b)]. For each unfragmented cell, the mean NDVI value of each UAV image was calculated.

2.3.3 Bias correction

To assess the spatial patterns on bias distribution, we calculated NDVI difference between
Sentinel and UAV mean values for each Sentinel pixel as

EQ-TARGET;temp:intralink-;e002;116;259NDVIdiffðx;yÞ ¼ NDVISentðx;yÞ − NDVIUAVðx;yÞ; (2)

Fig. 2 One tile of the remotely sensed images of the study site (August 2021): (a) UAV NDVI
image (0.02 m spatial resolution) and (b) Sentinel-2 NDVI image (10 m spatial resolution).

Fig. 3 (a) Ordered grid of pixels from Sentinel-2 and (b) polygon grid example highlighted with
black.
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where ðx; yÞ are the pixel coordinates in Sentinel-2 and the overlayed UAV NDVI, NDVIdiff is
the difference in NDVI values between Sentinel-2 and UAV images, NDVISent are NDVI values
calculated from Sentinel-2 images, and NDVIUAV are NDVI values calculated from UAV
images. To assess potential errors, mean error (ME)

EQ-TARGET;temp:intralink-;e003;116;687ME ¼ 1

n

Xn
i¼1

ðNDVISent − NDVIUAVÞ (3)

and the square root-mean-squared error (RMSE) were calculated:

EQ-TARGET;temp:intralink-;e004;116;627RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðNDVISent − NDVIUAVÞ22

s
: (4)

To assess systematic patterns in errors for overestimation and underestimation of NDVI, we
selected all the pixels with absolute values of NDVIdiff greater then RMSE (i.e., pixels with
significant error) and divided them into pixels with positive (NDVIdiff > 0) and negative
(NDVIdiff < 0) errors, comprising overestimation and underestimation of NDVI by Sentinel-
2. For all pixels with significant negative NDVIdiff , we have calculated spatial maximum and
minimum NDVI values (NDVImax and NDVImin), comprising the upper and lower NDVI enve-
lopes of underestimated values [see Eqs. (5) and (6)]. Likewise, for all the pixels with significant
positive NDVIdiff , we calculated spatial maximum and minimum NDVI values (NDVImax and
NDVImin), comprising the upper and lower NDVI envelopes of overestimated values [see
Eqs. (7) and (8)]:

EQ-TARGET;temp:intralink-;e005;116;455UNE ¼ NDVImaxðx;yÞ ∀ ðx; yÞ ∈ ðjNDVIdiffðx;yÞj > RMSEÞ ∩ ðNDVIdiffðx;yÞ < 0Þ; (5)

EQ-TARGET;temp:intralink-;e006;116;410LNE ¼ NDVIminðx;yÞ ∀ ðx; yÞ ∈ ðjNDVIdiffðx;yÞj > RMSEÞ ∩ ðNDVIdiffðx;yÞ < 0Þ; (6)

EQ-TARGET;temp:intralink-;e007;116;387UPE ¼ NDVImaxðx;yÞ ∀ ðx; yÞ ∈ ðjNDVIdiffðx;yÞj > RMSEÞ ∩ ðNDVIdiffðx;yÞ > 0Þ; (7)

EQ-TARGET;temp:intralink-;e008;116;364LPE ¼ NDVIminðx;yÞ ∀ ðx; yÞ ∈ ðjNDVIdiffðx;yÞj > RMSEÞ ∩ ðNDVIdiffðx;yÞ > 0Þ; (8)

where ðx; yÞ are the values at pixel coordinates x, y, UNE represents the upper negative envelope,
LNE is the lower negative envelope, UPE is the upper positive envelope, and LPE is the lower
positive envelope.

As previously noted, we developed different bias correction rates for values of NDVI ∈
(LNE, UNE) and NDVI ∈ (LPE, UPE). All the NDVI values outside of these ranges are assumed
not to require bias correction, as the error is less than RMSE. We used RMSE and ME for bias
correction to compare which of these metrics perform better. The following equation represents
this approach with RMSE; the same was conducted with ME:

EQ-TARGET;temp:intralink-;e009;116;257NDVIcorrSent ¼
8<
:

NDVISent þ RMSE; NDVISent ∈ ðLNE;UNEÞ;
NDVISent − RMSE; NDVISent ∈ ðLPE;UPEÞ;
NDVISent; NDVISent: ∈ ðLPE;UPEÞ ∪ ðLNE;UNEÞ;

(9)

where NDVIcorrSent is the bias-corrected Sentintel-2 NDVI.

2.4 Verification of Bias Correction

2.4.1 Verification of bias correction with VCI and SPI

To verify the accuracy gained from bias correction, we calculated VCI using a method proposed
by Kogan56 for NDVI values with and without correction:

EQ-TARGET;temp:intralink-;e010;116;100VCIðx;y;tÞ ¼
NDVIðx;y;tÞ − NDVIminðx;y;nÞ

NDVImaxðx;y;nÞ − NDVIminðx;y;nÞ
× 100%; (10)
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where ðx; y; tÞ are the values at pixel coordinates x, y at a certain time t (month), ðx; y; nÞ are the
vector values at pixel coordinates x, y for the entire period of observation n, VCIðx;y;tÞ are the
vegetation condition index values for specified pixels at times (month), and NDVIminðx;yÞ and
NDVImaxðx;yÞ are the monthly minimum and maximum NDVI values for many years (from April
to September from 2016 to 2021) for each pixel.

The area near Pacha-Ata meteorological station [Fig. 1(d)] was selected to assess and verify
the bias correction methods for Sentinel-2 because it is representative of the ecosystem and
proximate to UAV plots and the meteorological station. Monthly SPI values were calculated
using monthly precipitation data from Pacha-Ata meteorological station for the period 1981
to 2021. We used SPI drought index, which was verified in a Kyrgyzhydromet study13 as the
best drought index for Kyrgyzstan.

In 2009, the World Meteorological Organization (WMO) recommended using SPI for
drought monitoring, which has been adopted in research or operational practice by more than
70 countries.57 “SPI depth” denotes the precipitation sum for the number of months used in the
calculation. WMO recommends using the following SPI depth classification for detecting differ-
ent drought types: 1 or 2 months for meteorological drought, 3 to 6 months for agricultural
drought, 6 to 12 months, or more for monitoring hydrological drought.57

We calculated NDVI from Sentinel-2 and then conducted NDVI bias correction with two
methods (RSME and ME) [Eq. (11)] for vegetation growing season April to September
2016 to 2021. Next, we calculated the spatial mean of corrected NDVI images for each month
followed by calculating Pearson’s correlation coefficients between corrected NDVI spatial
means and SPI with different depths (1 to 12). The delayed response of vegetation to precipi-
tation creates correlation lags in the time series, thus, correlation coefficients were calculated
with different monthly shifts of corrected NDVI and VCI versus SPI.58

2.4.2 Verification of bias correction with crop yield

To verify corrected NDVI from Sentinel-2 with ground data, we compared mean annual cor-
rected NDVI on croplands of Jalal-Abad province for the vegetation growing season (April
to September of 2016 to 2021) with the crop yield productivity for the province (from the
National Statistical Committee of Kyrgyz Republic). We conducted correlation analysis of yield
of different crops and SPI for September with different SPI depths to identify which crops are
most related to precipitation and drought; these crops were then used to validate the NDVI cor-
rection. Only September was selected for the SPI calculation as this month is most representative
for yield approximations.13 However, since only six annual NDVI observations (2016 to 2021)
were available, we could not conduct a proper significant correlation analysis, so we applied a
qualitative visual assessment of the relation between NDVI and crop yield data.

3 Results

3.1 Bias Correction

After our qualitative visual analysis of NDVIdiff [Eq. (2)] on 59 UAV images, we determined that
Sentinel-2 overestimates NDVI in the areas with open terrain and grass (low NDVI values), and
underestimates NDVI in the areas with trees (high NDVI values). The error analysis [Eqs. (3) and
(4)] resulted in the following: RMSE ¼ 0.1228 and ME ¼ −0.077. The relation between
NDVISent and NDVIUAV is positive [Figs. 4(a) and 4(b)]. The linear regression model yielded
an R2 ¼ 0.59 and a p value < 0.001 [Fig. 4(a)] on uncorrected data. The envelope interval esti-
mates were: LNE ¼ 0.6, UNE ¼ 0.8, LPE ¼ 0.5, and UPE ¼ 0.6. After implementation of the
bias correction with RMSE and ME for Sentinel-2 using Eq. (9), the accuracy of the Sentinel-2
derived NDVI increased [Fig. 4(b)].

Verification with VCI indicates that using RMSE for bias correction of NDVI provides better
results than ME (Table 4). After correction, R2 increased to 0.88 with p value < 0.001

[Fig. 4(b)]. Thus we describe the bias correction by the following conditional equation:
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EQ-TARGET;temp:intralink-;e011;116;248VIcorrSent ¼
8<
:

NDVISent þ 0.1228; NDVISent ∈ ½0.6; 0.8�;
NDVISent − 0.1228; NDVISent ∈ ½0.5; 0.6Þ;
NDVISent; NDVISent: ∈ ½0.5; 0.6Þ ∪ ½0.6; 0.8�

: (11)

3.2 Verification of Bias Correction with VCI

To verify the bias-corrected NDVI with VCI, we calculated correlations between SPI indices and
NDVI with VCI for the area near Pacha-Ata meteorological station [Fig. 1(d)] and the climatic
data from that station indicates that correlation increases between VCI and SPI when corrected
NDVI Sentinel-2 data are used (Table 4). In general, correction of NDVI with RMSE indicates in
better results than with ME (Table 4). Therefore, RMSE correction was used for the final bias
correction [Eq. (11)].

When calculated vegetation indices are shifted by one month the correlation relationship
increased because precipitation affects vegetation with approximately a 2- to 3-week lag period.
The highest correlation was obtained between VCI corrected with RMSE and a 1-month lag with

Fig. 4 Relation between NDVI derived from Sentinel-2 and NDVI derived from UAV imagery; num-
ber of pixels = 6486: (a) Sentinel-2 without bias correction and (b) Sentinel-2 with bias correction.

Table 4 Correlation coefficients between Sentinel-2 derived corrected and uncorrected NDVI and
VCI with 0- and 1-month lag, and SPI indices with depth from 1 to 12 months; bold coefficients are
the significant ones with p < 0.05.

SPI1 SPI2 SPI3 SPI4 SPI5 SPI6 SPI7 SPI8 SPI9 SPI10 SPI11 SPI12

VCI 0.13 0.40 0.31 0.30 0.26 0.28 0.25 0.33 0.37 0.36 0.36 0.34

VCICorr-RMSE 0.13 0.41 0.31 0.31 0.27 0.31 0.27 0.35 0.39 0.37 0.37 0.35

VCICorr-ME 0.13 0.40 0.31 0.30 0.26 0.28 0.25 0.33 0.37 0.36 0.36 0.34

VCIþ1month 0.41 0.36 0.28 0.21 0.25 0.22 0.28 0.35 0.37 0.38 0.36 0.39

VCICorr-RMSEþ1month 0.42 0.36 0.29 0.22 0.28 0.24 0.29 0.37 0.37 0.40 0.37 0.42

VCICorr-MEþ1month 0.41 0.36 0.28 0.21 0.25 0.22 0.28 0.35 0.37 0.38 0.36 0.39

NDVI 0.05 0.09 0.12 0.11 0.11 0.07 0.10 0.08 0.10 0.17 0.13 0.13

NDVICorr-RMSE 0.02 0.11 0.14 0.13 0.12 0.10 0.13 0.11 0.13 0.19 0.16 0.15

NDVICorr-ME 0.05 0.09 0.12 0.11 0.11 0.07 0.10 0.08 0.10 0.17 0.13 0.13

NDVIþ1month 0.22 0.29 0.17 0.17 0.14 0.16 0.17 0.22 0.25 0.25 0.21 0.19

NDVICorr-RMSEþ1month 0.20 0.27 0.16 0.16 0.14 0.17 0.18 0.22 0.25 0.25 0.20 0.21

NDVICorr-MEþ1month 0.22 0.29 0.17 0.17 0.14 0.16 0.17 0.22 0.25 0.25 0.21 0.19
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SPI1 and SPI12 (r ¼ 0.42, p < 0.05), which shows the rate of precipitation in one month relative
to the multiyear norm (Table 4). The correlation coefficients between vegetation indices with 2-
and 3-month lags, and SPI were less than those with a 1-month lag, so they are not reported in the
results.

3.3 Verification of Bias Correction with Crop Yields

Using yield productivity data for different crops in Jalal-Abad province together with correlating
with SPI indices for September, we identified that wheat and barley are the crops most related to
precipitation and drought (Table 5). Thus these crops were used for verification of NDVI
correction.

The highest correlation coefficients between yield and SPI are between barley/wheat and
SPI6. The significant correlation is between barley and SPI6 with r ¼ 0.35, p < 0.05. A quali-
tative visual assessment of yield related to bias corrected NDVI was only possible due to insuf-
ficient sample size (Fig. 5).

The same tendency of the bias corrected NDVI and yield productivity is evident (Fig. 5). The
corrected annual NDVI curve is smoother than the uncorrected one and is in closer agreement
with the annual yield curve of barley and wheat (Fig. 5). The maximum yields for wheat and
barley in 2018 were 2.7 metric tons per hectare and 2.1 metric tons per hectare, respectively, and
NDVI with bias correction was 0.38. The minimum yields for wheat and barley in 2021 were 2.2
metric tons per hectare and 1.7 metric tons per hectare, respectively, and NDVI with bias cor-
rection was 0.31.

4 Discussion

Although most of forest, cropland, and pasture datasets are based on RS observations, the analy-
sis of vegetation succession still relies largely on fieldwork in a space-for-time framework with-
out the benefit of important historical remotely sensed information, with some exceptions.26

Nonetheless, challenges remain in the search of an optimal and reliable relationship between

Table 5 Correlation coefficients between yield productivity (metric tons per hectare from 1991 to
2021) and SPI indices; SPI with depth from 1 to 12 months; Bold coefficients are significant
(p < 0.05).

SPI1 SPI2 SPI3 SPI4 SPI5 SPI6 SPI7 SPI8 SPI9 SPI10 SPI11 SPI12

Grains 0.15 0.09 −0.13 −0.09 −0.08 −0.02 −0.04 −0.09 −0.08 −0.21 −0.21 −0.21

Wheat 0.25 0.32 0.20 0.14 0.16 0.26 0.14 0.09 0.05 0.22 0.22 0.22

Barley 0.26 0.33 0.11 0.24 0.29 0.35 0.27 0.22 0.19 -0.01 -0.02 -0.01

Corn 0.15 0.14 0.07 0.05 0.04 0.13 0.11 0.07 0.08 -0.08 -0.09 -0.09

Rice 0.19 0.16 −0.13 −0.09 −0.12 −0.06 −0.09 −0.14 −0.10 −0.15 −0.16 −0.16

Cotton 0.11 0.13 −0.11 −0.02 −0.04 0.03 0.02 −0.03 −0.02 −0.08 −0.08 −0.08

Tobacco 0.14 0.21 0.30 0.02 0.04 0.00 0.02 -0.02 -0.04 0.10 0.10 0.10

Vegetable oils 0.18 0.18 0.05 −0.01 −0.05 −0.01 −0.02 −0.07 −0.03 −0.06 −0.06 −0.06

Potatoes 0.22 0.16 −0.01 −0.05 −0.05 −0.01 −0.01 −0.03 0.00 −0.12 −0.12 −0.12

Vegetables 0.15 0.16 −0.11 −0.03 −0.03 0.01 0.00 −0.05 −0.01 −0.16 −0.16 −0.16

Melons 0.13 0.13 −0.05 −0.05 −0.05 −0.03 −0.03 −0.09 −0.04 −0.17 −0.17 −0.17

Fruits and berries 0.11 0.00 −0.10 −0.15 −0.13 −0.11 −0.12 −0.17 −0.13 −0.16 −0.16 −0.16

Grapes −0.21 −0.12 −0.04 −0.09 −0.12 −0.09 −0.14 −0.14 −0.18 0.15 0.15 0.16
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remotely detected changes in vegetation indices (e.g., NDVI and VCI) and actual vegetation
changes on the ground.

We found that decametric resolution satellite imagery had limitations in directly providing
reliable information on the status of walnut-fruit forests in the Western Tian Shan. This effect
was confirmed by the improved relation found between the corrected satellite derived NDVI and
the NDVI derived from UAV surveys in contrast to the original relation [Fig. 4(a)]. Sentinel-2
data overestimates NDVI in areas with open terrain and grass, and underestimates NDVI in areas
with trees. However, the accuracy of Sentinel-2 derived NDVI increased by implementing a bias
correction based on RMSE for different NDVI intervals: 0.5 < NDVI < 0.6 with negative RMSE
and 0.6 < NDVI < 0.8with positive RMSE [Fig. 4(b)], and R2 increased to 0.88 with a p value <
0.001 [Fig. 4(b)]. However, using UAV together with field spectroradiometry can yield a greater
spectral band coherence of RSME < 1%.44 High LAI estimation accuracy (R2 values up to 0.88)
was also obtained in other studies.47

In addition, we found that drought index derived from RS, data are well correlated with
ground-based SPI drought index. Using our proposed bias correction method, the correlation
between VCI and SPI increased by 3% on average (Table 4). Moreover, shifting VCI by 1-month
ahead of precipitation data yielded the highest correlation with SPI indices. This shift in veg-
etation response relative to precipitation has also been observed by other studies.58–61

The highest correlation relations between crop yield and SPI drought indices were obtained
for barley and wheat. A significant correlation was found between barley yield and SPI6
(r ¼ 0.35). Barley and wheat are mostly cultivated on unirrigated lands; thus they tend to
be more correlated with drought index SPI. According to WMO recommendations, SPI6 deter-
mines agriculture drought (soil drought) which is indicative of yield response to drought. Other
crops, such as corn, rice, cotton, tobacco, vegetables, potatoes, vegetable oil crops, melons,
fruits, and berries, are grown in flatter, irrigated lands and thus their yields are less affected
by meteorological and soil droughts. Bias corrected NDVI replicated barley and wheat yield
productivity well (Fig. 5).

We assumed that the extremely high spatial resolution due to the near ground surface UAV
surveys provided a “ground truth” quality layer with respect to Sentinel-2 imagery. Nonetheless,
true field data collection coupled with hyperspectral imagery would still be required to further
investigate the effects of complex and steep topography on Sentinel derived NDVI values.
Furthermore, the spectral bands of DJI Phantom 4 Multispectral and Sentinel-2 a/b are not iden-
tical (Table 2), which contributes some uncertainty. However, our findings are a clear step for-
ward from previous studies that used Phantom quadcopters adapted and equipped with third-
party cameras,46 notwithstanding the results of this research.

Despite the lack of consideration of certain factors discussed herein, we are confident that
our work is an advance in understanding how the combination of UAVand satellite RS methods
can improve the monitoring of droughts, pastures, croplands, and walnut fruit forest conditions.

Fig. 5 Crop yield and NDVI time series for Jalal-Abad region (spatially averaged).
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Because other investigations obtained similar results in terms of Sentinel-2 sensitivity to veg-
etation cover,23,24 we are confident that our analysis is relevant for other mountains regions and
that the bias correction method can be used to correct the Sentinel-2 images to obtain improved
results in other similar contexts. Our findings can thus be used to improve management of forest
resources and contribute to conservation of rare and threatened tree species.

5 Conclusions

In this study, Sentinel-2 satellite images were compared with imagery from a UAVequipped with
a multispectral camera to evaluate both techniques based on NDVI and VCI indices.

The statistical comparison between Sentinel-2 and UAV imagery shows that the followings.

• The trend of the average NDVI is almost identical for both RS techniques.
• There is a strong correlation of the NDVI indices between the two techniques.
• The implementation of a bias correction method significantly increases NDVI and VCI

indices derived from Sentinel-2.

Both UAVand Sentinel-2 platforms provide important information for the vegetation cover of
mountains, and they are important tools for the monitoring and managing walnut-fruit forests,
pastures, and croplands in Kyrgyzstan and similar mountainous regions. The choice of the most
appropriate technology (UAVor satellite) depends on the use and the aim of the data collection,
as they have different spatial and temporal characteristics, costs, and requirements. But using
proposed bias correction method, we can significantly increase accuracy of the Sentinel-2 data.
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